Unsupervised Neural Hidden Markov Models

نویسندگان

  • Ke Tran
  • Yonatan Bisk
  • Ashish Vaswani
  • Daniel Marcu
  • Kevin Knight
چکیده

In this work, we present the first results for neuralizing an Unsupervised Hidden Markov Model. We evaluate our approach on tag induction. Our approach outperforms existing generative models and is competitive with the state-of-the-art though with a simpler model easily extended to include additional context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-organizing maps and its applications in sleep apnea research and molecular genetics

This paper presents the application of special unsupervised neural networks (self-organizing maps) to different domains, as sleep apnea discovery, protein sequences analysis and tumor classification. An enhancement of the original algorithm, as well as the introduction of several hierachical levels enables the discovery of complex structures as present in this type of applications. Furthermore,...

متن کامل

Analysis of Drifting Dynamics with Neural Network Hidden Markov Models

K. Pawelzik MPI f. Stromungsforschung Bunsenstr. 10 37073 Gottingen, Germany We present a method for the analysis of nonstationary time series with multiple operating modes. In particular, it is possible to detect and to model both a switching of the dynamics and a less abrupt, time consuming drift from one mode to another. This is achieved in two steps. First, an unsupervised training method p...

متن کامل

Speaker Verification with D Adaptati

This paper presents methods for adapting models in a data fusion-based speaker verification system. The models that are used in the data fusion system are the neural tree network (NTN), dynamic time warping (DTW), and hidden Markov model (HMM). The models provide information based on discriminant information, distortion measurements, and probabilistic evaluation, respectively. The parameters of...

متن کامل

Hidden Markov Model Variational Autoencoder for Acoustic Unit Discovery

Variational Autoencoders (VAEs) have been shown to provide efficient neural-network-based approximate Bayesian inference for observation models for which exact inference is intractable. Its extension, the so-called Structured VAE (SVAE) allows inference in the presence of both discrete and continuous latent variables. Inspired by this extension, we developed a VAE with Hidden Markov Models (HMM...

متن کامل

Spatial-Temporal Clustering of Neural Data Using Linked-Mixtures of Hidden Markov Models

This paper builds upon the previous Brain Machine Interface (BMI) signal processing models that require apriori knowledge about the patient’s arm kinematics. Specifically, we propose an unsupervised hierarchical clustering model that attempts to discover both the interdependencies between neural channels and the self-organized clusters represented in the spatial-temporal neural data. Results fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1609.09007  شماره 

صفحات  -

تاریخ انتشار 2016